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1 | INTRODUCTION

Alzheimer’s disease (AD) has been the subject of intense research for
decades, primarily with a focus on the 8-amyloid hypothesis, in which -
amyloid accumulation initiates a cascade of neurodegeneration leading
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Abstract

This perspective offers an alternative to the amyloid hypothesis in the etiology of
Alzheimer’s disease (AD). We review evidence for a novel signaling mechanism based
on a little-known peptide, T14. T14 could drive neurodegeneration as an aberrantly
activated process of plasticity selective to interconnecting subcortical nuclei, the iso-
dendritic core, where cell loss starts at the pre-symptomatic stages of the disease.
Each of these cell groups has the capacity to form T14, which can stimulate produc-
tion of p-Tau and S-amyloid, suggestive of an upstream driver of neurodegeneration.
Moreover, results in an animal AD model show that antagonism of T14 with a cyclated
variant, NBP14, prevents formation of g-amyloid, and restores cognitive function to
that of wild-type counterparts. Any diagnostic and/or therapeutic strategy based on
T14-NBP14 awaits validation in clinical trials. However, an understanding of this novel
signaling system could bring much-needed fresh insights into the progression of cell
loss underlying AD.
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Highlights

* The possible primary mechanism of neurodegeneration upstream of amyloid.

* Primary involvement of selectively vulnerable subcortical nuclei, isodendritic core.
* Bioactive peptide T14 trophic in development but toxic in context of mature brain.
* Potential for early-stage biomarker to detect Alzheimer’s disease.

 Effective therapeutic halting neurodegeneration, validated already in 5XFAD mice.

to the characteristic symptoms of memory loss, cognitive impairment
and confusion. The presence of this marker is a major factor in the
formal diagnosis of AD (https://www.nia.nih.gov/health/alzheimers-
disease-diagnostic-guidelines). However, the g-amyloid pathological
cascade itself, and closely associated changes, are recognized as highly
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complex, involving multiple mechanisms including tau phosphory-
lation, defective mitochondrial function, ionic imbalances, dysfunc-
tional autophagy, synaptic loss, neuroinflammation and impaired brain
energy metabolism.?

This Perspective presents an alternative approach where we dis-
cuss a possible mechanism upstream of this multifactorial, but familiar,
scenario and consider the properties of the interconnecting subcorti-
cal cell groups that have been increasingly recognized as the first to
degenerate at the start of AD.2% Identification of the features that
differentiate these neurons from the rest of the brain could provide
valuable insight into the basic process underlying AD, and point the
way to an eventual means of preventing the -amyloid cascade from

being initiated.

2 | SELECTIVE NEURONAL VULNERABILITY IN
NEURODEGENERATION

The mechanisms underlying neuronal vulnerability in neurodegen-
erative disease are likely to include several genetic, molecular, or
developmental factors that, until now, have been explored mainly in
relation to cortical areas.* However, a growing weight of evidence
shows early involvement of certain subcortical brain regions in AD due
to their selective vulnerability to tau pathology.®” These subcortical
nuclei form the so-called isodendritic core (IC), comprising an exten-
sive interconnected group of neurons located within the brainstem and
basal forebrain, which have a common and distinct phylogenetic origin,
the basal plate.27 |C cells share characteristic properties that dis-
tinguish them from other neurons as early as 4 weeks of gestation.?
During the embryonic stage of brain development, brain cells located
in the alar plate specialize early, losing their plasticity.” In contrast, the
IC cells, derived from the basal plate, retain their capacity to respond
to neurotrophic factors.” Since IC nuclei give rise to a widespread net-
work of neuromodulatory pathways they are also described as global
neurons’ (Figure 1); they regulate crucial physiological processes such
as arousal and sleep-wake cycles. Interestingly, subsequent studies
have shown that before cognitive decline is apparent there are neu-
ropsychiatric or sleep impairments with degeneration occurring at one
of the IC sites, the locus coeruleus (LC).8 This link is particularly telling
considering that AD has a long preclinical phase in which subcortical
degeneration may be increasingly present, causing a variety of sentinel
symptoms.>? The IC is affected in a wide spectrum of neurodegener-
ative disorders: in the case of AD, the noradrenergic LC is one of the
nuclei more severely affected, showing profound neuronal loss from
early stages despite an absence of f-amyloid but correlated instead
with tau-pathology.>?

Braak et al., (2011)10 identified a pre-tangle stage consisting of an
accumulation of hyperphosphorylated tau (p-tau) in the LC, while g-
amyloid is absent, with neuronal loss occurring caudally at this site?;
a similar occurrence of tau pathology again without any 8-amyloid has
been reported elsewhere in the brainstem.? Data from animal stud-
ies validate these findings by showing that a chemical lesion of the

LC in the APP transgenic mouse model induces AD neuropathologi-

RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional (e.g., PubMed) sources and meeting
abstracts and presentations. We explored the nuclei that
are primarily vulnerable to Alzheimer neurodegeneration
at the earliest stage of the disease, before amyloid is
present.

2. Interpretation: We develop a hypothesis, consistent with
the literature, that Alzheimer’s results from inappropri-
ate activation of an erstwhile developmental mechanism
specific to the vulnerable cells and driven by a bioactive
peptide.

3. Future directions: If the peptide T14 is indeed the piv-
otal driver of the neurodegenerative process, then it
offers a novel means of early-stage detection, prior to the
onset of cognitive symptoms, and upstream of amyloid.
Moreover, direct interception of the T14 process would
result in a more effective therapeutic with the potential
for halting cell loss. If such treatment were given in the
presymptomatic window, there is a realistic prospect that

cognitive impairments would never present.
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FIGURE 1 Schematicrepresentation of the main areas comprising
the IC. The nuclei comprising the IC are heterogeneous with regard to
transmitter systems. However, a common feature is their expression
of acetylcholinesterase irrespective of the presence of
acetylcholine.’® Note that all areas are interconnected and project
distantly to the cortex. In Alzheimer’s disease, BF, LC, DR, and HT
show tau-related degeneration. In Parkinson’s Disease, alfa-synuclein
predominantly affects SN, LC, and DR. BF, basal forebrain; DR, dorsal
raphe; HT, hypothalamus; IC, isodendritic core; LC, locus coeruleus;
SN, substantia nigra; Created by BioRender.com.
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FIGURE 2 T14, C-terminal peptide of acetylcholinesterase. The synaptic variant of acetylcholinesterase contains the T14 peptide in its
C-terminal, AEFHRWSSYMVHWK. As shown in the figure, T14 has a 50% homology with the corresponding 14 amino acid sequence of S-amyloid

(asterisks and graey shading).

cal changes before -amyloid plaque deposition.'! Similarly, infusion of
pseudo-hyperphosphorylated human tau into the LC of rats, resultsina
spread of pre-tangle tau to other IC nuclei (e.g., dorsal raphe) and even-
tually to cortical areas.!2 Studies on individuals with mutations in genes
causing autosomal-dominant AD provide an excellent opportunity to
investigate preclinical changes in vivo: in such cases, the decline of LC
integrity is independent of 8-amyloid, is negatively correlated with cor-
tical damage and memory loss, and starts up to 12 years before the
clinical onset.® There is a persuasive case therefore to search for any
agent upstream of amyloid in the degenerative process, that features

as a signaling molecule in the IC.

3 | THE T14 SIGNALING PATHWAY

The nuclei comprising the IC are heterogeneous with regard to trans-
mitter systems. However, acommon feature is the expression of acetyl-
cholinesterase (AChE) irrespective of the presence of acetylcholine
(ACh),'2 its principal substrate, and independent of any cholinergic
function. Non-cholinergic roles have been recognized for AChE for
many years.'*

AChE, acting in a non-cholinergic capacity has been implicated in
developmental processes; it is transiently expressed in the developing
nervous system, in particular during neuronal proliferation, migration,
and axonal outgrowth.'> AChE can operate as a neurotrophic signaling
molecule via activation of calcium influx into neurons.!® This particular
non-enzymatic action of AChE has been attributed to a 14-mer peptide,
T14, which is cleaved from the carboxy-terminus of the AChE variant
most common in the brain and shares a striking sequence homology
with -amyloid (Figure 2).

In the brain, AChE exists as a monomeric form (G1) that can
oligomerize into tetrameric forms (G4), anchored to the plasma mem-

brane. The C-terminus containing the T14 sequence is the region that

includes the residues that build the disulphide bonds necessary for
oligomerization of G1 into the G4. Consequently, when T14 is cleaved
from the parent molecule, AChE cannot oligomerize and the monomer
G1 predominates.!3 Thus, the presence of G1, which is more abundant
than G4 in the early embryonic brain, can be regarded as an indirect
index of free T14. This cleavage product is a bioactive agent, triggering
calcium influx and hence promoting cell growth® through activation of
the mTOR pathway (Figure 3A): indeed, T14 and mTOR correlate highly
in the human brain.’

The calcium influx induced by T14, while beneficial in development,
may be excitotoxic in aging, when tolerance to calcium is markedly
reduced.’® In AD there is a high level of the G1 form of AChE, as in the
embryonic and early postnatal brain.® The increment in G1 may be due
to a failure of the oligomerization process of the tetrameric forms as a
result of proteolytic cleavage at its C-terminus.'® An increase in free
T14 is indeed associated with the progression of AD.1% A consequent
inappropriate promotion of calcium influx within the adult central ner-
vous system (CNS), may now trigger AD pathology, with T14 acting as
a signaling molecule (Figure 3A). The notion that the neurodegenera-
tion seen in AD may be an aberrantly activated process of plasticity,
reflecting phenomena seen during development, is not new.'? Here
we are suggesting that T14 is the key molecule driving such a process.
The recapitulation in AD of the profile of G1/G4 found in the human
embryo,2% where the level of G1 is increased, suggests that a common
process may be operating, with the rise in G1 indicative of increased
levels of free T14.

Although caution must be exercised in extrapolating from in vitro
and animal preparations to the clinic, further evidence for T14 in per-
petuating AD pathology has been found in PC12 cells: the peptide
triggers anincrease in phosphorylated GSK3, the major tau kinase, and
in p-tau,’® as well as a reduction in the membrane bound B-amyloid
precursor protein (APP) and an increase in f-amyloid release which

may result from an increment in the proteolytic processing of APP
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FIGURE 3 Overview of the processes by which T14 may drive Alzheimer’s disease3%%: (A) The T14 signaling pathway: (1) T14 binds to
neurons that express the a7 nicotinic receptor, enhancing (2) calcium influx causing (3) depolarization and activating voltage sensitive calcium
channels. (4) Aberrantly raised calcium triggers GSK-3 activation resulting in (5) mTOR1 activation that triggers (6) AChE release from
intracellular storage, for example, dendritic smooth endoplasmic reticulum into extracellular space; subsequently (7) proteases, for example,
IDE56 cleave T14 from AChE. (8) T14 diffuses into extra-synaptic space to act on a7 receptors, perpetuating the cycle in neighboring cells. Lacking
the T14-containing disulfide bonds, G1 monomers are unable to oligomerize to G4 (AChE), accounting for their dominance in development and
increased levels in AD. mTOR1 triggers (9) Tau phosphorylation and (10) cleavage of f-amyloid from APP, (10) release of 3-amyloid, enhancing the
toxicity of T14.4* (12) The T14-induced calcium gradually causes proliferation of target surface a7 receptors, further enhancing T14 actions.
Potentiated calcium influx leads to (13) calcium uptake into mitochondria and decreased ATP synthesis, causing electron leakage, triggering (14)
cytochrome C release, followed by caspase-3 activation, increasing (15) free radical and (16) cell death. Consequent (17) membrane disintegration
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(Figure 3A). This effect of T14 can also be seen in ex vivo rat brain
slices’® and is consistent with the finding that its parent molecule,
AChE, can modulate the expression of presenilin 1 (PS1), the catalytic
component of gamma-secretase increasing PS1 at both the protein
and transcript levels.?! The increases in -amyloid in the extracellu-
lar domain and in cytosolic p-tau may further enhance the expression
of AChE?2 and, hence, probably the production of more T14. In AD,
B-amyloid and T14 could develop a synergistic action that prolongs
further cell death accompanied by increased release of AChE.3

The target for T14 is an allosteric site on the a7 nicotinic receptor, 3
where it operates exclusively,2>24 one of the most powerful calcium
ionophores in the brain, even compared with the NMDA receptor?®
(Figure 3A). The a7 receptor is co-expressed with AChE during devel-
opment, including in brain regions devoid of ACh, where choline,
derived from the diet, could act as an alternative primary ligand.2®

The calcium influx enhanced by activation at the allosteric site of
the a7 receptor, to which T14 binds,32427 induces an increase in
AChE release,'® providing a target for further proteolytic cleavage
and hence increased free T14.13 T14 has been shown to upregulate
the expression of this receptor, leading to even more calcium influx.13
Maintenance of this positive feedback results in excitotoxicity and
progressive cell death® (Figure 3A).

The a7 nicotinic receptor has long been implicated in AD,28 where
it is upregulated in the cholinergic basal nucleus neurons?? and
astrocytes.3C A transgenic AD mouse model that expresses high -
amyloid levels displays upregulation of this receptor.3! g-Amyloid can
bind to the a7 receptor, with actions on PC12 cells comparable to,
though less potent than, T14.13

There is persuasive evidence that T14 acts exclusively via the a7
nicotinic receptor.132427 The peptide is effective in oocytes trans-
fected with the a7 receptor,’® and a-bungarotoxin, a well established
a7 blocker, prevents the actions of T14 in SH-SY5Y cells®2 and organ-
otypic hippocampal cultures.’® Furthermore, T30, a peptide which
includes T14, attenuates evoked neuronal responses in the substan-
tia nigra and basal forebrain,2’ areas which are rich in a7 receptors,
but not in the striatum, where a7 receptors are absent despite expres-
sion of other cholinergic receptors.3® Most compelling of all however,
is the more recent finding that overexpression of a7 receptors in PC12
cells promotes an enhanced calcium influx when compared with the
wild-type PC12 cells?*; in contrast, the a7345.3454 Mutation effectively
abolishes the T14-triggered responses. The close relationship between
T14 and the a7 receptor was further evidenced in the more phys-

iological preparation of the ex vivo rat brain, where T30 increases

THE JOURNAL OF THE ALZHEIMER’S ASSOCIATION

a7 receptor mRNA, and also in human brain post mortem, where lev-
els of T14 and a7 nAChR exhibit a strong correlation, reflecting the
progression of neurodegeneration. Taken together these data would
make it hard to account for T14 binding to any other receptor, and
thus interception at this binding site would make a very attractive and
remarkably specific therapeutic strategy.2*

The continued increase in T14 in AD would act on the increasing
number of a7 nicotinic receptors'® to generate yet more B-amyloid.
Thus, T14 could promote a vicious cycle of pathological events, result-
inginincreased production of the familiar AD hallmarks, 3-amyloid and
p-tau (Figure 3A).

4 | T14 IN THE AD BRAIN

The significance of T14 in AD is further suggested by the increase

3 as well as

in the peptide found in various areas of the AD brain,*
in a mouse model of AD.3* The 5XFAD transgenic mouse model of
AD expresses human APP and PSEN1 transgenes with a total of five
AD-linked mutations and displays an AD-like pathology involving rapid-
onset of B-amyloid.?> These mice display T14 immunoreactivity in
hippocampal neurons and adjacent immunoreactive plaques, particu-
larly in the subiculum,’® where a high incidence of 8-amyloid has been
previously reported®®; the immunoreactivity is scarcely detectable in
the transgene negative controls.’? In contrast, T14 is present in the
dopamine neurons of the substantia nigra pars compacta in wild-type
mice,?” indicating the potential of IC neurons to drive AD pathology.
T14 immunoreactivity is detected in the pars compacta in early-stage
AD, increasing with Braak staging.2” These immunohistochemical find-
ings further indicate that the IC cell groups comprise a functionally
distinct set of primarily vulnerable nuclei in which the T14 system
retains the potential to be mobilized into adulthood. Against this back-
ground, we now explore further the significance of T14 for driving
AD pathogenesis, with increased $-amyloid and p-tau as downstream
consequences (Figure 3C).

In advanced AD, T14 levels are doubled in comparison with age-
matched controls in the midbrain.’® In the hippocampus, the level
of T14 is significantly elevated at late Braak stages compared with
early stages; there is even an increase in T14 between presymptomatic
Braak O-1and Braak Il stages.!® At later stages, T14 immunoreactivity is
detected in neurons in the immediate vicinity of T14-immunoreactive
plaques, as in the 5XFAD mouse model.23 A close correspondence

between the level of T14 immunoreactivity and the Braak stage is also

makes previously membrane-bound AChE vulnerable to further protease degradation, leading to increased T14 availability for diffusion to
neighboring neurons via the neuropil characteristic of basal plate-derived neurons, facilitating volume transmission and perpetuating the T14
process. (B) NBP14, a cyclated variant of T14 that antagonizes its binding,'® intercepts the chain of events activated by T14 as illustrated in panel
A. (C) lllustrates a four-stage proposal aligned with Tau'® and amyloid staging®? about how the T14 process interacts with predisposing risk factors
such as free radical attack and 8-amyloid and p-tau production and how the symptoms of cognitive impairment may take up to 20 years to become
apparent. Note that T14 toxicity would first trigger the deposition of Tau pathology in the LC and other IC nuclei leading to mood and sleep
disturbances in early Braak stages (I-11). Conversely, cognitive symptoms would start in more advanced stages (Braak I11-1V) once Tau has extended
to the entorhinal and temporoparietal cortices. In parallel, T14 and Tau would promote and perpetuate 3-amyloid deposition within the cortices
along the disease course. (A) and (B) are based on Garcia-Rates et al.**; (C) was created by BioRender.com. APP, 8-amyloid precursor protein.
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seen in the substantia nigra, where the signal within neurons increases
in density as the number of neurons decreases with disease progres-
sion, indicating intraneuronal accumulation of T14 at the later Braak
stages.?’

5 | EVENTUAL CLINICAL APPLICATIONS BASED
ON THE T14 SYSTEM

The data from human tissue and the mouse model of AD suggest
that T14 could serve as a biomarker reflecting the severity of AD
pathology, including at the pre-symptomatic stage. An increase (24%
increment) has been found in post mortem CSF in AD cases com-
pared with age-matched controls.!® This observation suggests that
T14 CSF levels could serve as a biomarker reflecting AD etiology.
Furthermore, nasal secretions may be informative given that a sig-
nificant proportion of their content has been shown to derive from
CSF in non-human animals3®; these secretions have already been
used in a lateral flow format to detect S-amyloid changes in AD.%”
It should be noted that age-dependent levels of T14 have been

38 a site at which pathological aberrations

detected at the epidermis,
have been associated with neurodegenerative disease including AD.3?
Since Parkinson’s disease has been detected by a change in chemical
composition of sebum,*® sebum may offer a further matrix for diag-
nostic detection of T14 in AD. The prospect of a lateral flow test to
detect T14 as a pre-symptomatic biomarker based on nasal secretions,
sebum, or perhaps saliva (which is known to contain AChE,*?) is worth
pursuing.

Might blockade of T14 lead to successful therapy? There is cur-
rently no truly effective treatment for AD. AChE inhibitors (donezepil,
rivastigmine) and an antagonist of NMDA receptors (memantine) are
the therapeutic agents employed most often to improve the functional
and cognitive deficits of AD patients. Lecanemab, an anti-S-amyloid
monoclonal antibody, is the latest in the line of therapies; it can slow
progression of the cognitive deficit early after diagnosis by 27%, albeit
with significant side effects and for only a limited period of time.*2
The recent approval of lecanemab has given clinicians the first disease-
modifying drug for patients with mild cognitive impairment or early
AD.* While lecanemab has been shown to be effective in removing
amyloid, there is still much to learn about how this impacts a patient’s
daily life. More recently, two Phase 3 trials of gantenerumab proved
effective in reducing the amyloid burden, but were not associated
with any slowing of cognitive decline.*> Some clinicians do not feel
that the clinical benefits outweigh the potential side effects associ-
ated with amyloid antibody medication, including the development of
amyloid related imaging abnormalities (ARIA). AD is a complex disease,
and amyloid is likely a downstream component of AD rather than the
primary initiating factor.

Hence, alternative therapeutic strategies are needed that could
target the process of degeneration and, ideally, halt cell loss at the
pre-symptomatic stages. Antagonism of T14 emerges as an attractive
therapeutic strategy. Accordingly, an anti-T14 antibody (Ab-19) has

been tested invitro and shown to inactivate selectively the free peptide

and block its effects.’® An alternative approach would be to intercept
the binding of T14 at the level of its highly selective receptor; conse-
quently, a cyclic form of the linear T14, NBP14, has been developed and
validated in several preparations'® (Figure 3B). In post mortem human
AD brain tissue, NBP14 displaces the binding of T14 to the allosteric
site on a7 nicotinic receptors with a clear dose-response.® This com-
petitive displacement has also been demonstrated in ex vivo rat brain
slices.13 At the a7 receptor, NBP14 displaces T14 more effectively than
galantamine,** an established therapy for AD with limited efficacy.*®
A possible explanation for the relatively poor therapeutic outcome
with galantamine and other a7 antagonists is that the key target site
is likely to be occupied by endogenous T14. NBP14, as the cyclated
version of T14, can more readily displace the endogenous linear coun-
terpart, thereby abolishing its deleterious effects including induction of
B-amyloid, and tau phosphorylation.1344

NBP14, given intranasally twice weekly for up to 14 weeks, has
neuroprotective effects in vivo in the 5XFAD mouse model.’® By
6 weeks of treatment, appearance of intracellular f-amyloid in the
hippocampus and frontal cortex is significantly lower than in vehicle-
treated controls. After 14 weeks, when extracellular 8-amyloid plaques
become apparent in the basal forebrain in the vehicle-treated group,
the NBP14-treated mice express much lower levels of this marker.13 By
this later stage, the NBP14 treatment results in a significant improve-
ment in cognitive performance to the level of wild-type counterparts,
with an increased recognition index for a new object compared with
the vehicle-treated group.!® These neuroprotective actions of NBP14
in the AD animal model suggest this cyclic form of T14 could inspire a
novel therapeutic strategy for AD (Figure 3B) as well as variants that
may be even more potent.*¢

6 | A THREE STAGE DESCRIPTION OF
ALZHEIMER'’S DISEASE

Although the actions of T14 can be demonstrated at the level of the
single cell, the question remains, as posed at the outset, as to why
the T14-rich IC neurons are selectively vulnerable, and why this vul-
nerability to neurodegeneration is particularly conspicuous with aging.
As pointed out previously, an interesting key difference is that the
IC basal plate derived cells retain the potential for plasticity, show-
ing a response to neurotrophic agents that is not seen in the alar
plate derived cell populations.” This persistent capacity for plasticity
may provide a clue as to why such cells can succumb to a degen-
erative process, possibly in response to reactivation of an erstwhile
developmental process (Figure 3C).

Calcium influx is a crucial factor in neuroplasticity; in excess, how-
ever, intracellular calcium will be sequestered in the mitochondria
where it compromises oxidative phosphorylation, causing a leakage of
electrons and the formation of free radicals, leading to membrane dis-
integration and finally cell death through excitotoxicity.*” There are
various factors determining whether calcium influx is ultimately bene-
ficial or detrimental. Tipping the balance from trophic to toxic depends

not only on the amount,*® which is related to the duration of influx,3
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but also on the age; tolerance to calcium can change dramatically by a
factor of three in cell cultures within just a week.*?

Andres-Benito et al.> have shown that LC neurons are particu-
larly susceptible to oxidative damage and altered mitochondria early
on in AD. Complex alteration of several metabolic pathways occurs
in the LC accompanying neurofibrillary tangle formation at early and
middle asymptomatic stages.>° This situation would be exacerbated in
the aging brain where the decline in scavenging mechanisms>? would
enhance the risk of free radical damage. Such damage could trigger
the mobilization of T14 and a vicious cycle of toxicity that results in
neurodegeneration.

In summary, IC cells are differentially vulnerable in AD due to their
sensitivity to neurotrophic factors reflecting their embryological man-
date. This vulnerability may become clinically significant with aging
given the capacity of all the IC cell groups, irrespective of their principal

neurotransmitter, to produce T14 from AChE.

7 | CONCLUSIONS AND FUTURE DIRECTIONS

This Perspective explores findings that offer a promising upstream
complement to the familiar amyloid hypothesis. The peptide T14 is
gaining wider recognition for its actions and expression: it can enhance
production of f-amyloid in vitro and ex vivo, and is a conspicuous fea-
ture of the brain in clinical cases of AD and in a widely established
animal model of AD. Moreover, antagonism of T14 with the cyclated
variant NBP14 suppresses the toxic actions of f-amyloid in vitro and
in vivo and prevents its production in the brain. We conclude that T14
may act as a pivotal driver of the neurodegenerative cascades in AD
and, in highlighting its actions, this perspective provides new insights
into its etiology, diagnosis, and potential treatment. Further work is
needed to evaluate T14 as a biomarker in humans by investigating its
profile in a readily accessible fluid such as nasal secretions or sebum.
In parallel, initiation of Phase 1 human clinical trials using NBP14 as
a therapeutic intervention may lead to a drug that halts further cell
death. A pre-symptomatic biomarker combined with an intervention
targeted at T14 to prevent the appearance of cognitive impairment
would be a novel and attractive approach toward the goal of ensuring
that future generations can look forward not only to improved physical

health, but also to a clear-minded old age.
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