Newsflash

Press Release – NEURO-BIO ATTRACTS OVER $3 MILLION IN SERIES A INVESTMENT TO DEVELOP A NEW APPROACH TO ALZHEIMER’S DISEASE Click here for the Neuro-Bio press release 17th March

Supporting Publications

Garcia-Ayllón, M.-S., E. Llorens, J. Avila, J. Alom and J. Saez-Valero (2014) “Elevated Acetylcholinesterase Levels by Hyperphosphorylated Tau Overexpression.” Alzheimer’s & Dementia 10(4): P651.
Horvath et al. (2014) Neuropathology of Parkinsonism in patients with pure Alzheimer’s disease. J Alzheimers Dis. 39 (1): 115-20.
Irwin, D. J., Lee, V. M. & Trojanowski, J. Q. Parkinson’s disease dementia: convergence of alpha synuclein, tau and amyloid-beta pathologies (2013) Nature reviews. Neuroscience 14, 626-636,
Trillo et al. (2013) Ascending monoaminergic systems alterations in Alzheimer’s disease, translantic basic science into clinical care. Neurosci Biobehav Rev. 37 (8): 1363-79.
Greenfield SA (2013) Discovering and targeting the basic mechanism of neurodegeneration: the role of peptides from the c-terminus of acetylcholinesterase Chemico-Biological Interactions. 2013 May 25;203(3):543-6. doi: 10.1016/j.cbi.2013.03.015. Epub 2013 Apr 3.
View PDF
Badin, S., Eraifej, J,. Greenfield, S. A. (2013) High-resolution spatio-temporal bioactivity of a novel peptide revealed by optical imaging in rat orbitofrontal cortex in vitro: possible implications for neurodegenerative diseases. Neuropharmacology. 2013 Oct;73:10-8. doi: 10.1016/j.neuropharm.2013.05.019. Epub 2013 May 24.
View PDF
Garcia-Ratés, S., Lewis, M., Worral R., & Greenfield S. A. (2013) Additive Toxicity of β-Amyloid by aNovel Bioactive Peptide In Vitro: Possible Implications for Alzheimer’s Disease. PLoS ONE 8(2):e54864. doi:10.1371/journal.pone.0054864 PLOS1.
View PDF
Halliday, A. C. & Greenfield, S. A. (2012) From Protein to Peptides: a Spectrum of Non-Hydrolytic Functions of Acetylcholinesterase. Protein & Peptide Letters 19, 165-172, doi:10.2174/092986612799080149.
View PDF
Braak & Del Tredici. (2012) Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr opin Neurol. 25 (6): 708-14.
Szot (2012) Common factors among Alzheimer’s disease, Parkinson disease, and epilepsy: possible role of the noradrenergic nervous system. Epilepsi 53 (1): 61-6.
Attems et al. (2012) The relationship between subcortical tau pathology and Alzheimer’s disease. Biochem Soc Trans. 40 (4): 711-5.
Garcia-Ayllon, M. S., D. H. Small, J. Avila and J. Saez-Valero (2011) “Revisiting the Role of Acetylcholinesterase in Alzheimer’s Disease: Cross-Talk with P-tau and beta-Amyloid.” Front Mol Neurosci 4: 22.
Braak et al. (2011) Stages of the Pathologic Process in Alzheimer Disease: Age Categories From 1 to 100 Years. Journal of Neuropathology & Experimental Neurology. 70(11):960-969.
Braak & Del Tredici (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta neuropathol. 121 (5): 589-95.
Lea Tenenholz Grinberg, Udo Rueb and Helmut Heinsen. (2011) Brainstem: Neglected Locus in Neurodegenerative Diseases. Front Neuro); 2: 42.
Halliday, A. C., Kim, O., Bond, C. E. & Greenfield, S. A. (2010) Evaluation of a technique to identify acetylcholinesterase C-terminal peptides in human serum samples. Chem-Biol Interact 187, 110-114, doi:10.1016/j.cbi.2010.02.010.
View PDF
Garcia-Ayllon, M. S., I. Riba-Llena, C. Serra-Basante, J. Alom, R. Boopathy and J. Saez-Valero (2010) “Altered levels of acetylcholinesterase in Alzheimer plasma.” PLoS One 5(1): e8701.
Bond, C. E., Zimmermann, M. & Greenfield, S. A. (2009) Upregulation of alpha 7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides. Plos One 4, -, doi:Artn E4846 Doi 0.1371/Journal.Pone.0004846.
View PDF
Simic et al. (2009) Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neuobiol. 35 (6): 532-54.
Greenfield SA, Zimmermann M. and Bond CE. (2008) Non-hydrolytic functions of ACHE: The significance of C-terminal peptides. Federation of European Biochemical Societies. FEBS Journal 275, pp 604-611.
Zimmermann, M., Grosgen, S., Westwell, M. S. & Greenfield, S. A. (2008) Selective enhancement of the activity of C-terminally truncated, but not intact, acetylcholinesterase. J Neurochem 104, 221-232, doi:DOI 10.1111/j.1471-4159.2007.05045.x.
View PDF
Greenfield, S. A., Zimmermann, M. & Bond, C. E. (2008) Non-hydrolytic functions of acetylcholinesterase – The significance of C-terminal peptides. Febs J 275, 604-611, doi:DOI 10.1111/j.1742-4658.2007.06235.x.
View PDF
Weinshenker (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5 (3): 342-5.
Bond, C. E. & Greenfield, S. A. (2007) Multiple cascade effects of oxidative stress on astroglia. Glia 55, 1348-1361, doi:Doi 10.1002/Glia.20547.
View PDF

Bond, C. E. & Greenfield, S. A. (2007) L-type voltage-gated calcium channels regulate astroglial responses to oxidative Stress. Neuron Glia Biol 2, S71-S71.


Haglund et al. (2006) Locus coeruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neurophatology 26 (6): 528-32.
Onganer, P. U., Djamgoz, M. B. A., Whyte, K. & Greenfield, S. A. (2006) An acetylcholinesterasederived peptide inhibits endocytic membrane activity in a human metastatic breast cancer cell line. Bba-Gen Subjects 1760, 415-420, doi:DOI 10.1016/j.bbagen.2005.12.016.
View PDF
Bond, C. E. et al. (2006) Astroglia up-regulate transcription and secretion of ‘readthrough’ acetylcholinesterase following oxidative stress. Eur J Neurosci 24, 381-386, doi:DOI 10.1111/j.1460-9568.2006.04989.x.
View PDF
Greenfield SA (2005) A peptide derived from acetylcholinesterase is a pivotal signaling molecule in neurodegeneration. Chemico-Biological Interactions Vol 157-158, pp 122-218.
View PDF
Mann, E. O., Tominaga, T., Ichikawa, M. & Greenfield, S. A. (2005) Cholinergic modulation of the spatiotemporal pattern of hippocampal activity in vitro. Neuropharmacology 48, 118-133, doi:DOI 10.1016/j.neuropharm.2004.08.022.
View PDF
Zbarsky, V., Thomas, J. & Greenfield, S. (2004) Bioactivity of a peptide derived from acetylcholinesterase: involvement of an ivermectin-sensitive site on the alpha 7 nicotinic receptor. Neurobiology of Disease 16, 283-289, doi:10.1016/j.nbd.2004.02.009.
View PDF
Greenfield, S. A., Day, T., Mann, E. O. & Bermudez, I. (2004) A novel peptide modulates alpha 7 nicotinic receptor responses: implications for a possible trophic-toxic mechanism within the brain. J Neurochem 90, 325-331, doi:DOI 10.1111/j.1471-4159.2004.02494.x.
View PDF
Emmett, S. R. & Greenfield, S. A. (2004) A peptide derived from the C-terminal region of acetylcholinesterase modulates extracellular concentrations of acetylcholinesterase in the rat substantia nigra. Neurosci Lett 358, 210-214, doi:DOI 10.1016/j.neulet.2003.12.078.
View PDF
Day, T. & Greenfield, S. A. (2004) Bioactivity of a peptide derived from acetylcholinesterase in hippocampal organotypic cultures. Exp Brain Res 155, 500-508, doi:DOI 10.1007/s00221-003-1757-1.
View PDF
Whyte, K. A. & Greenfield, S. A. (2003) Effects of acetylcholinesterase and butyrylcholinesterase on cell survival, neurite outgrowth, and voltage-dependent calcium currents of embryonic ventral mesencephalic neurons. Exp Neurol 184, 496-509, doi:Doi 10.1016/S0014-4886(03)00386-8.
View PDF
Day, T. & Greenfield, S. A. (2003) A peptide derived from acetylcholinesterase induces neuronal cell death: characterisation of possible mechanisms. Exp Brain Res 153, 334-342, doi:DOI 10.1007/s00221-003-1567-5.
View PDF
Bon, C. L. M. & Greenfield, S. A. (2003) Bioactivity of a peptide derived from acetylcholinesterase: electrophysiological characterization in guinea-pig hippocampus. Eur J Neurosci 17, 1991-1995, doi:DOI 10.1046/j.1460-9568.2003.02648.x.
View PDF
Zarow et al. (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimers and Parkinson diseases. Arch Neurol 60 (30): 337-41.
Greenfield, S. & Vaux, D. J. (2002) Parkinson’s disease, Alzheimer’s disease and motor neurone disease: Identifying a common mechanism. Neuroscience 113, 485-492.
View PDF
Day, T. & Greenfield, S. A. (2002) A non-cholinergic, trophic action of acetylcholinesterase on hippocampal neurones in vitro: Molecular mechanisms. Neuroscience 111, 649-656, doi:Pii S0306-4522(02)00031-3.
View PDF
Woolf, N. J. (1996) “Global and serial neurons form A hierarchically arranged interface proposed to underlie memory and cognition.” Neuroscience 74(3): 625-651.
Greenfield, SA (1992) Cell death in Parkinson’s disease. Essays in Biochem. 27, pp 103-118.
View PDF
Arendt, T., M. K. Bruckner, M. Lange and V. Bigl (1992) “Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development–a study of molecular forms.” Neurochem Int 21(3): 381-396.
Card, J. P., R. P. Meade and L. G. Davis (1988) “Immunocytochemical localization of the precursor protein for beta-amyloid in the rat central nervous system.” Neuron 1(9): 835-846.
Bondareff et al. (1987) Neuronal degeneration in locus coreuleus and cortical correlates of Alzheimers disease. Arch Neurol 60 (3): 337-41.
Rossor MN. (1981) Parkinson’s disease and Alzheimer’s disease as disorders of the isodendritic core. Br Med J (Clin Res Ed). 19 Dec 12;283(6306):1588-90.